钻头刃口修磨和强化对钻削加工的改善
孔加工在金属切削加工中占有重要地位,一般约占机械加工量的1/3。其中钻孔约占22%~25%,其余孔加工约占11%~13%。由于孔加工条件苛刻的缘故,孔加工刀具的技术发展要比车、铣类刀具迟缓一些。近年来,随着中、小批量生产对生产效率、自动化程度以及加工中心性能要求的不断提升,刀具磨锋技术、多轴数控刀具刃磨设备的发展带动了孔加工刀具的发展,其中最典型的就是在机械生产中已应用多年、使用最为广泛的整体结构的钻头修磨技术逐渐成熟起来。通过对钻头刃口的修磨和强化改善钻削加工条件,要从钻头的结构特点和实际使用情况中寻求解决方法。
钻头的特点
1.钻头的材质分为高速钢和硬质合金,高速钢主要采用高速钢W系、Mo系材料;硬质合金采用钨钛类(YG)、钨钛钴类(YT)材料。比较有代表性的如表1中所列W18Gr4V、YG6和YT14。
(1)主偏角Kr在锋角2φ确定后也随之确定。
(2)由于钻头切削刃的刀尖(钻头直径处)为切削刃的最低点,从结构可知钻头切削刃的刃倾角λs为负。
(3)在钻头螺旋槽形状结构影响下,刃部前角λs由钻头外径的韧带处向钻心方向逐渐变小。
(4)切削刃的前角主偏角λs,随主偏角Kr的增大而随之增大。
4.麻花钻的横刃也是切削刃的重要组成部分。如图2所示,横刃的前角γom、后角αf、斜角φ,也随着钻头切削刃的不同有着一定的变化。
钻头在加工过程中的磨损情况
1.钻头的磨损主要发生在切削刃部分(见图3)
1.改进钻头的切削刃
采用新型的刃磨法改进钻尖、横刃的几何形状。以往钻头的钻尖刃磨采用普通刃磨法,先行磨出锋角即2φ角后,再用砂轮圆周的90°成形棱边靠手工方式修磨钻心部分。受到传统的刃磨方法的限制,钻头修磨后对称性较差,精度较低,只有采用传统的118°锋角才可保证切削刃为直刃。近年来,我公司引进了数控万能工具磨床,该机床采用的是比较先进的五轴数控系统,可实现对钻头的切削刃部进行铲磨,改动钻头的切削刃形式,仍可保证较高的刀具精度。于是,我们通过一些改进钻头钻尖的几何角度来尝试提高钻头的使用寿命,提高钻头和改善钻削加工条件。
根据钻头的结构特点我们先对麻花钻的锋角(2φ角)进行了改变,采用118°~140°的锋角分别进行试验。在生产现场对加工情况进行跟踪和掌握,我们发现在加工铸铁时,采用加大锋角的钻头有一定效果:钻削加工时,加工变得轻快,声音和振动明显减小,孔的表面粗糙度得到提高。从切屑的形状判断加工过程平稳。但随着钻头的锋角加大,钻头的磨损情况加剧。多次尝试后发现,在锋角为130°左右时加工最为平稳,加工数量和质量明显提高。
在改善加工中钻头横刃部分轴向受力情况时,要克服横刃处负前角等恶劣的切削条件。我们在横刃处理时,采用大切除的形式铲磨横刃,缩短横刃的宽度,使钻心的横刃与主切削刃接近十字交叉,减少钻削中的轴向力和钻削中的转矩(见图6)。经实践中检验,钻头轴向受力情况改善后,定心精度大为提高。在壳体加工中心上采用此结构的钻头,可在一定条件下取消中心钻,提高加工效率和缩短生产节拍。该钻头已在我公司生产中逐步试验推广采用。
根据硬质合金材料硬度高的优势,采用大锋角140°从而加大切削前角,改变钻头受力情况,减小了切削力,使加工更为顺畅。依据所加工材料的特点对钻头的横刃部分进行改进,采用R型刃口过渡,在R型刃口基础上加大了横刃前角,钻心部分进行钻孔前先行切入定位,实现了自定心,取消了中心钻的工序,满足了位置度要求,并在直径处进行棱边的削边处理,形成保护刃,使钻头在钻出时不易造成崩刃,极大地提高了钻头的寿命。
此种结构对小直径的钻头改善尤为适用。现在我公司同步器车间加工二速同步器锁销孔直径为φ7.5mm,公差范围0~+0.016mm,每个零件上共加工6个孔,相对位置度要求0.05mm。
原加工方式为钻定心、钻孔和铰孔成形,位置度较难以保证,并且加工节拍较长,效率较低。现由硬质合金钻头直接钻削成形,能够保证孔的加工精度和孔的位置精度,满足了工艺产品的需要,极大地提高了加工效率。采用改进后的钻头切削刃如图7所示。
通过在修磨方面的尝试和摸索,我们还发现一个重要的现象,就是无论是高速钢还是硬质合金材料的钻头,修磨后切削部分的刃口总是存在一些细小的缺口,约0.1mm。这些缺口最初并不引起大家的重视,但在实践加工时往往就是这些缺口给钻头带来了致命的伤害。这种情况在使用硬质合金材料钻头和在各类钻头钻削加工钢材料的时候尤为明显。一般的修磨方法是采用金刚石锉刀将主刀刃与横刃的交叉处倒圆,同时将主切削刃处倒棱角30°,刃口倒钝宽度根据钻头直径而定(见图8)。
我们选用了含金刚石微粉的尼龙钝化轮,利用高速旋转,通过不同的角度对钻头的刃部进行刷式运动,靠柔性的接触通过调整时间和空间的角度将刃口每一部分都加工到位。钝化后在钻头的切削刃口形成圆滑过渡。刃口经过钝化后刀刃强度显著提高,切削时能经受较大的压力,增强了刀具稳定性,有效地延长了钻头的寿命。
涂层处理也是提高钻头使用寿命的一个重要的方法。根据加工条件采用不同的涂层可提高钻头的表面硬度和氧化温度,降低摩擦系数,大幅提高钻头的使用寿命。其中TiN涂层(涂层颜色为黄色)对高速钢类钻头的使用性能有很大的提高,可有效地提高高速钢钻头硬度,提高钻头的表面粗糙度并降低摩擦,改善钻削条件。而TiCN (涂层颜色为灰黑色)和TiALN(涂层颜色紫褐色)这两种涂层广泛应用在硬质合金材料的钻头上。这几种涂层材料的性能对比见表3。
结语
钻头由于其尺寸必须限制在孔的尺寸以内,而且受到自身结构的限制所以技术改进难度较大。但随着科学技术的进步,数控刃磨设备不断发展,麻花钻的设计、制造水平较以往有了很大改进。钻头作为孔加工刀具中最基本、最广泛的工具之一,在机械加工领域中得到了长足的发展和进步。
钻头的特点
1.钻头的材质分为高速钢和硬质合金,高速钢主要采用高速钢W系、Mo系材料;硬质合金采用钨钛类(YG)、钨钛钴类(YT)材料。比较有代表性的如表1中所列W18Gr4V、YG6和YT14。
表1 高速钢和硬质合金材料的物理力学性能
图1 钻头的基本结构
图2 切削刃的几何角度
(1)主偏角Kr在锋角2φ确定后也随之确定。
(2)由于钻头切削刃的刀尖(钻头直径处)为切削刃的最低点,从结构可知钻头切削刃的刃倾角λs为负。
(3)在钻头螺旋槽形状结构影响下,刃部前角λs由钻头外径的韧带处向钻心方向逐渐变小。
(4)切削刃的前角主偏角λs,随主偏角Kr的增大而随之增大。
4.麻花钻的横刃也是切削刃的重要组成部分。如图2所示,横刃的前角γom、后角αf、斜角φ,也随着钻头切削刃的不同有着一定的变化。
钻头在加工过程中的磨损情况
1.钻头的磨损主要发生在切削刃部分(见图3)
图3 钻头在加工过程中的磨损
表2 钻头加工中切削部分切削力的分布
图4 切削刃的受力分析
图5 切削热的分布情况
1.改进钻头的切削刃
采用新型的刃磨法改进钻尖、横刃的几何形状。以往钻头的钻尖刃磨采用普通刃磨法,先行磨出锋角即2φ角后,再用砂轮圆周的90°成形棱边靠手工方式修磨钻心部分。受到传统的刃磨方法的限制,钻头修磨后对称性较差,精度较低,只有采用传统的118°锋角才可保证切削刃为直刃。近年来,我公司引进了数控万能工具磨床,该机床采用的是比较先进的五轴数控系统,可实现对钻头的切削刃部进行铲磨,改动钻头的切削刃形式,仍可保证较高的刀具精度。于是,我们通过一些改进钻头钻尖的几何角度来尝试提高钻头的使用寿命,提高钻头和改善钻削加工条件。
根据钻头的结构特点我们先对麻花钻的锋角(2φ角)进行了改变,采用118°~140°的锋角分别进行试验。在生产现场对加工情况进行跟踪和掌握,我们发现在加工铸铁时,采用加大锋角的钻头有一定效果:钻削加工时,加工变得轻快,声音和振动明显减小,孔的表面粗糙度得到提高。从切屑的形状判断加工过程平稳。但随着钻头的锋角加大,钻头的磨损情况加剧。多次尝试后发现,在锋角为130°左右时加工最为平稳,加工数量和质量明显提高。
在改善加工中钻头横刃部分轴向受力情况时,要克服横刃处负前角等恶劣的切削条件。我们在横刃处理时,采用大切除的形式铲磨横刃,缩短横刃的宽度,使钻心的横刃与主切削刃接近十字交叉,减少钻削中的轴向力和钻削中的转矩(见图6)。经实践中检验,钻头轴向受力情况改善后,定心精度大为提高。在壳体加工中心上采用此结构的钻头,可在一定条件下取消中心钻,提高加工效率和缩短生产节拍。该钻头已在我公司生产中逐步试验推广采用。
图6 钻头横刃的改进
根据硬质合金材料硬度高的优势,采用大锋角140°从而加大切削前角,改变钻头受力情况,减小了切削力,使加工更为顺畅。依据所加工材料的特点对钻头的横刃部分进行改进,采用R型刃口过渡,在R型刃口基础上加大了横刃前角,钻心部分进行钻孔前先行切入定位,实现了自定心,取消了中心钻的工序,满足了位置度要求,并在直径处进行棱边的削边处理,形成保护刃,使钻头在钻出时不易造成崩刃,极大地提高了钻头的寿命。
此种结构对小直径的钻头改善尤为适用。现在我公司同步器车间加工二速同步器锁销孔直径为φ7.5mm,公差范围0~+0.016mm,每个零件上共加工6个孔,相对位置度要求0.05mm。
原加工方式为钻定心、钻孔和铰孔成形,位置度较难以保证,并且加工节拍较长,效率较低。现由硬质合金钻头直接钻削成形,能够保证孔的加工精度和孔的位置精度,满足了工艺产品的需要,极大地提高了加工效率。采用改进后的钻头切削刃如图7所示。
图7 改进后的钻头切削刃
通过在修磨方面的尝试和摸索,我们还发现一个重要的现象,就是无论是高速钢还是硬质合金材料的钻头,修磨后切削部分的刃口总是存在一些细小的缺口,约0.1mm。这些缺口最初并不引起大家的重视,但在实践加工时往往就是这些缺口给钻头带来了致命的伤害。这种情况在使用硬质合金材料钻头和在各类钻头钻削加工钢材料的时候尤为明显。一般的修磨方法是采用金刚石锉刀将主刀刃与横刃的交叉处倒圆,同时将主切削刃处倒棱角30°,刃口倒钝宽度根据钻头直径而定(见图8)。
图8 切削刃钝化
我们选用了含金刚石微粉的尼龙钝化轮,利用高速旋转,通过不同的角度对钻头的刃部进行刷式运动,靠柔性的接触通过调整时间和空间的角度将刃口每一部分都加工到位。钝化后在钻头的切削刃口形成圆滑过渡。刃口经过钝化后刀刃强度显著提高,切削时能经受较大的压力,增强了刀具稳定性,有效地延长了钻头的寿命。
涂层处理也是提高钻头使用寿命的一个重要的方法。根据加工条件采用不同的涂层可提高钻头的表面硬度和氧化温度,降低摩擦系数,大幅提高钻头的使用寿命。其中TiN涂层(涂层颜色为黄色)对高速钢类钻头的使用性能有很大的提高,可有效地提高高速钢钻头硬度,提高钻头的表面粗糙度并降低摩擦,改善钻削条件。而TiCN (涂层颜色为灰黑色)和TiALN(涂层颜色紫褐色)这两种涂层广泛应用在硬质合金材料的钻头上。这几种涂层材料的性能对比见表3。
表3 几种典型涂层材料的性能对比
结语
钻头由于其尺寸必须限制在孔的尺寸以内,而且受到自身结构的限制所以技术改进难度较大。但随着科学技术的进步,数控刃磨设备不断发展,麻花钻的设计、制造水平较以往有了很大改进。钻头作为孔加工刀具中最基本、最广泛的工具之一,在机械加工领域中得到了长足的发展和进步。
本文标签:钻头刃口修磨和强化对钻削加工的改善
* 由于无法获得联系方式等原因,本网使用的文字及图片的作品报酬未能及时支付,在此深表歉意,请《钻头刃口修磨和强化对钻削加工的改善》相关权利人与机电之家网取得联系。